Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation.

نویسندگان

  • Zhili He
  • Aifen Zhou
  • Edward Baidoo
  • Qiang He
  • Marcin P Joachimiak
  • Peter Benke
  • Richard Phan
  • Aindrila Mukhopadhyay
  • Christopher L Hemme
  • Katherine Huang
  • Eric J Alm
  • Matthew W Fields
  • Judy Wall
  • David Stahl
  • Terry C Hazen
  • Jay D Keasling
  • Adam P Arkin
  • Jizhong Zhou
چکیده

The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.

Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts,...

متن کامل

Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach.

The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgari...

متن کامل

Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, Desulfovibrio vulgaris

Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared...

متن کامل

Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough.

Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiologic...

متن کامل

Recovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain.

A novel sulfate-reducing bacterium (strain DePue) closely related to Desulfovibrio vulgaris ssp. vulgaris strain Hildenborough was isolated from the sediment of a heavy-metal impacted lake using established techniques. Although few physiological differences between strains DePue and Hildenborough were observed, pulse-field gel electrophoresis (PFGE) revealed a significant genome reduction in st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 5  شماره 

صفحات  -

تاریخ انتشار 2010